
LLNL-TR-405242

Initial Proposal for MPI 3.0 Error
Handling

G. Bronevetsky

July 9, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Initial Proposal for MPI 3.0 Error Handling

The MPI 2 spec contains error handling and notification mechanisms that have a number of limitations

from the point of view of application fault tolerance:

 The specification makes no demands on MPI to survive failures. Although MPI implementers

are encouraged to “circumscribe the impact of an error, so that normal processing can

continue after an error handler was invoked”, nothing more is specified in the standard. In

particular, the defined MPI error classes are used only to clarify to the user the source of the

error and do not describe the MPI functionality that is not available as a result of the error.

 All errors must somehow be associated with some specific MPI call. As such,

o It is difficult for MPI to notify users of failures in asynchronous calls, such as an

MPI_Rsend call, which may return immediately after the message data is sent along

the wire but before it is successfully delivered.

o There is no provision for asynchronous error notification regarding errors that will

affect future calls, such as notifying process p of the failure of process q before p

tries to communicate with q.

 There is no description of when error notification will happen relative to the occurrence of

the error. In particular, the specification does not state whether an error that would cause

MPI functions to return an error code under the MPI_ERRORS_RETURN error handler would

cause a user-defined error handler to be called during the same MPI function or at some

earlier or later point in time.

 Although MPI makes it possible for libraries to define their own error classes and invoke

application error handlers, it is not possible for the application to define new error

notification patterns either within or across processes. This means that it is not possible for

one application process to ask to be informed of errors on other processes or for the

application to be informed of specific classes of errors.

Proposed API

I. Error Occurrence

a. Execution Model

All errors will be defined in terms of an MPI execution model, which is the overall set of entities defined

by the MPI spec (processes, communicators, files, one-way windows, etc.) and their interactions. For

each entity type we define a number of possible actions that are available to each entity, along with the

degree to which the entity is capable of taking the possible action. For example, a given communication

channel transfers data and does so at either full performance, degraded performance or fails to do so.

The error handling API is focused on communicating to the application how the capabilities of different

entities change over time, both improving and degrading.

The current preliminary model defines the following entities and actions:

 Processes

Computation: full-performance, degraded-performance, failed

 Communications

Delivery: successful, partially corrupted, failed

 Uni-directional point to point communication channels (channels)

Data delivery: full-performance, degraded-performance, failed

 MPI_Comms

Data delivery: full-performance, degraded-performance, failed

 MPI_Windows

Data delivery: full-performance, degraded-performance, failed

Data storage: operational, failed

 MPI_Files

Reading: full-performance, degraded-performance, failed

Writing: full-performance, degraded-performance, failed

Appending: full-performance, degraded-performance, failed

File creation: full-performance, degraded-performance, failed

File deletion: full-performance, degraded-performance, failed

…

Additional entities that may be defined by future, more precise versions of the model include:

 MPI_Datatypes

 MPI_Op

 MPI_Group

 MPI_Topology

 MPI_Request

 MPI_Status

The following figure summarizes the MPI execution model. Processes, channels and files are

the only first-class entities. Communications correspond to individual MPI data exchanges, including

MPI_Send/MPI_Recv pairs, MPI_Sendrecvs, collective operations, file operations or one-way operations.

Each communication is associated with a set of processes and channels and with a single

MPI_Comm. File or one-way communications are also associated with their respective MPI_File and

MPI_Window objects. Each MPI_Comm is associated with a set of processes and the channels

that connect them.

Changes to the execution model are described via events. Each event identifies the MPI entity and the

capability that has been affected, the old status of the capability and the new status of the capability.

For example, if a node fails, this may be described by the MPI implementation as

 the computation capability of the processes executing on the node transitioning from full-

performance to failed status,

 the data delivery capability of the communication channels that involve these processes

transitioning from full-performance to failed status, and

 the delivery capability of all in-flight messages to/from the failed processes transitioning from

successful to failed status.

It is not defined how MPI implementations map low-level events to changes in the MPI execution

model. However, if a given capability is reported as being in failed status, the application’s use of this

capability should result in an error. On the other hand, if a given capability is reported as non-failed, it is

acceptable for subsequent use of this capability to result in an error, as long as this error is also

associated with an error event that reports that the capability shifts to a degraded status.

b. Notification ranks

Each event that describes a change in the execution model must be communicated by MPI to

one or more application ranks. For each event the standard will define the set of ranks, called the

“notification set” that are by default subscribed to this event. It will be possible to change these default

subscriptions using an explicit subscription/unsubscription API. For example, the notification set of a

process failure event should be the set of ranks that communicate with the process. The notification set

of a communication failure event (i.e. corruption of a single point-to-point message) is the set of

processes participating in the communication. In the case of collective communication we will need to

define whether processes that neither send nor receive the corrupted data should be informed of the

corruption event.

c. Notification Sites

Each event will be associated with specific MPI_Comm, MPI_Window or MPI_File object. If a process

executes an MPI operation on a given object that has undelivered events associated with the object,

those events are delivered during that call. Delivery may be performed via any available API, including

return codes, callbacks or explicit event queue retrieval operations (described in Section II). If two MPI

function calls operate on a given MPI object with pending events we will need to decide whether the

events are delivered to every such call or just one such call.

d. Notification Ordering

Events that are associated with a given MPI object must be delivered in FIFO order relative to any

communication that uses this object. For example, consider the example in the following figure where

there is a communication error event that is associated with communicator comm. Suppose that process

pj is subscribed to this event (either by default or via explicit subscription). It is required that process pj is

informed of the event no later than the next causal chain that connects the event to process pj. In this

example, the event notification must happen at or before the first MPI_Recv call that uses comm.

II. Error Notification API

a. Notification subscription

The error notification API is based on the publish-subscribe model, where processes must subscribe to

errors on various MPI entities to notified of these errors. The following methods are available for this

purpose:

MPI_Send(comm) EVENT

Notification <= MPI_Recv(comm)

pi

MPI_Send(comm)

MPI_Recv(comm)
Pj

MPI_Event_subscribe(MPI_entity entity, int rank, MPI_Comm rankComm,

 MPI_Event_capability capability_type, MPI_Event_change

 capability_change_type, MPI_Event_context context,

 MPI_Event_Subscription* subscription)

MPI_Event_subscribe(MPI_entity entity,

 MPI_Event_capability capability_type, MPI_Event_change

 capability_change_type, MPI_Event_context context,

 MPI_Event_Subscription* subscription)

Subscribes the calling process to events that modify the given capability of the given MPI entity

in the given fashion. For objects that may reside on another process, the process’ rank must be

provided (rank is relative to the given communicator). Any of these arguments may be specified

using a wildcard to indicate that the application wishes to subscribe to events that have any

value for the given argument. The call returns an opaque object in the subscription

argument that describes the set of events being subscribed to. It also takes a context

argument, which is described in section II.b.ii. Associated with the context will be an event

handler callback function, also described in II.b.ii.

int MPI_Event_unsubscribe(MPI_Event_Subscription subscription)

The inverse of MPI_Event_subscribe.

We need to decide what happens when multiple MPI_Subscribe calls cover the same event and

then the application unsubscribes from one of these subscriptions. Does the process remain

registered to the events in the intersection of the two original subscriptions?

int MPI_Subscribe_free(MPI_Event_Subscription subscription)

Frees the event descriptor associated with this handle. This does not unsubscribe the process

from the events described by this handle but rather frees the space taken up by the handle

itself. It may not be possible to unsubscribe the process from the events that match the given

subscription. (will need to work out the details of this)

b. Event delivery

i. Return Codes

The “return codes API” will be used by default when the application doesn’t do any specific event

subscription. By default for an event E, associated with MPI object O and let P be E’s notification set. If

process pI P operates on O, this process will return an error code if E represents a transition in some

capability of some MPI entity from non-failed to failed state. Other events are not delivered.

ii. Callbacks and contexts

If the application explicitly subscribes to receive events it must provide a callback function for each

event pattern it wants to listen for. Given the event E described above, if pi calls a function that operates

on O and the application has subscribed itself to E, MPI may call (subject to the ordering requirements

of section I.d) the provided callback. The callback may then return the same or different MPI_Event

object to identify the state of the application after the callback has performed its corrective measures. If

the event corresponds to an error (e.g. some entity transitions from non-failed to failed state), this

causes function call to return an error. Otherwise, the function call returns MPI_SUCCESS.

When the application registers multiple event handler callbacks that match the same event, all of them

will be executed by MPI and each of them will be able to return an event. If any of these events

correspond to errors, pi’s function call will return an error. Otherwise, it will return MPI_SUCCESS.

Because the above behavior makes it difficult to manage event handling in libraries, this specification

uses a concept of event contexts, ensuring that all event subscription and handling is performed within

some event context. The intention is to allow each code module (library, thread, etc.) to create its own

event context object and do all of its event subscriptions using this object (only one callback allowed per

context). Furthermore, given a pair of context objects, the application will be able to establish a partial

order between the contexts. Intuitively, if contexA < contextB, the event handler in contextA will be

called before the event handler in contextB and contextB’s event handler will be given the event

returned by contextA’s handler, rather than the original event. If given context is ordered after multiple

other contexts, all of the events returned by these contexts will be provided as arguments (the

argument to the callback is a reference to an array of contexts and the size of the array). pI’s function

call returns an error if some event handler that belongs to a context that is followed by no other context

returns an error event. Otherwise, it returns MPI_SUCCESS.

Looking from a high level, event contexts allow application modules to establish hierarchies of event

notification, allowing lower-level modules to process and respond to events before higher-level

modules. Furthermore, since applications will be allowed to define their own events, lower-level

modules will be able to define their own execution model and use context chaining to raise the level of

abstraction that their users must deal with. It may be useful to enable applications to apply this generic

event notification functionality to non-MPI function calls.

MPI_Context_create(MPI_Context* context,

 MPI_Event (callback*)(MPI_Event* evt, int num_events))

Creates a new context with the given event handler callback.

MPI_Context_free(MPI_Context context)

Deallocates the given context object and unsubscribes any subscriptions associated with this context.

MPI_Context_order(MPI_Context front, MPI_Context back)

Given two contexts, orders the front context such that its event handler is called before back’s

event handler.

c. Event management

int MPI_Create_event(MPI_Entity entity,

 MPI_Event_capability capability_type,

 MPI_Event_change capability_change_type, MPI_Event* evt)

Creates an event from the given MPI entity that describes the given change to the given

capability of the entity.

int MPI_Event_free(MPI_Event evt)

Deallocates the given event.

